If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+32=-12k
We move all terms to the left:
k^2+32-(-12k)=0
We get rid of parentheses
k^2+12k+32=0
a = 1; b = 12; c = +32;
Δ = b2-4ac
Δ = 122-4·1·32
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4}{2*1}=\frac{-16}{2} =-8 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4}{2*1}=\frac{-8}{2} =-4 $
| -22+x/10=18 | | 6=1/3(-6)+b | | 1/4(4x-12)=-11 | | 12.8=2v | | 18=13v-4v | | 0.125(3k-2)=0.25(k+5) | | 2x=3=4+x | | -7=4/5(-2)=b | | 6n+8n=28 | | 11q-7=4 | | -3(4x+3)+4(6×+1)=43 | | -3v–3v=-24 | | p/3-9=6 | | -4=6(3)+b | | 1/2f+8=9 | | 0.3p-0.05+0.1=0.19 | | 20d-17d=18 | | 3^3x=27 | | |5m+7|+7=15 | | (2=3i)-(5+8i) | | 22x-5=21x-16 | | (8x-7)(5x+4)=40x(x-18) | | 15x+(3x17)=141 | | 17w-15w=6 | | 3d-9d=16 | | 11x35=24x-61 | | r-14=-29 | | 5-7y/2+4y=-8/7 | | (3,-4);m=6 | | 17w–15w=6 | | 4(u-1)=−20 | | 4(x+4)=-2(-4+2x) |